China Good quality Manufacturer Provides Diaphragm Couplings, Toothed Couplings, and Plum CHINAMFG Couplings

Product Description

Product Description

Diaphragm couplings provide an economical transmission solution for general equipment, with waisted diaphragms, greater operating torque and less diaphragm stress.

The maximum opening value is a round hole or a tapered hole with a keyway. If you need to open other types of holes, please consult CHINAMFG Technology.

Related Products


Main application:

DWZ disc eddy current brake is mainly used as load in loading dynamometer equipment. it is experimental apparatus which can measure the dynamic mechanical properties, especially in dynamic loading test whose power value is small or tiny, also can be treated as suction power devices of other dynamic devices.

DW series disc eddy current dynamometer is, is that add device for measuring torque and rotational speed on DWZ series disc eddy current brake, it is experimental apparatus which can measure the dynamic mechnical properties, especial in dynamic loading test whose power value is small or tiny.

CW eddy current brake as a load is mainly used to measure the mechanical characteristics of inspection equipment, it and other control instrument (including loading apparatus, torque speed sensor and torque power acquisition instrument etc.) can be composed of eddy current dynamometer can be used for performance testing of the internal combustion engine, motor, gas turbine, automobile and its dynamic mechanical components, compared with other power measuring device, the CW series power measuring device has the advantages of reliability, high stability and practicability.

Eddy current brake/dynamometer Rated Power Rated torque Rated speed Maximum rotational speed Turning inertia Maximum excitation voltage Maximum excitation Current Cooling water pressure Flow of the cooling water
DWZ/DW-0.75 0.75 5 2000-2600 16000 0.002 80 3 0.1~0.3 1
DWZ/DW-3 3 10 2000-2600 14000 0.003 80 3 0.1~0.3 2
DWZ/DW-6 6 25 2000-2600 14000 0.003 80 3 0.1~0.3 3
DWZ/DW-10 10 50 2000-2600 13000 0.01 80 3 0.1~0.3 4.5
DWZ/DW-16 16 70 2000-2600 13000 0.02 80 3.5 0.1~0.3 6.5
DWZ/DW-25 25 120 2000-2600 11000 0.05 80 3.5 0.1~0.3 15
DWZ/DW-40 40 160 2000-2600 10000 0.1 90 4 0.1~0.3 25
DWZ/DW-63 63 250 2000-2600 9000 0.18 90 4 0.1~0.3 45
DWZ/DW-100 100 400 2000-2600 8500 0.32 120 4 0.1~0.3 60
DWZ/DW-160 160 600 2000-2600 8000 0.52 120 5 0.1~0.3 100
DWZ/DW-250 250 1100 2000-2600 7000 1.8 150 5 0.2~0.4 180
DWZ/DW-300 300 1600 2000-2600 6000 2.7 150 5 0.2~0.4 210
DWZ/DW-400 400 2200 2000-2600 5000 3.6 180 10 0.2~0.4 300
DWZ/DW-630 630 3600 2000-2600 5000 5.3 180 10 0.2~0.4 450

Company Information:


Product Line:





  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

diaphragm coupling

Can Diaphragm Couplings Compensate for Axial, Angular, and Parallel Misalignments?

Yes, diaphragm couplings are designed to compensate for axial, angular, and parallel misalignments between two shafts, making them highly flexible and versatile for various mechanical systems. Here’s how diaphragm couplings handle each type of misalignment:

  • Axial Misalignment:
  • Diaphragm couplings can accommodate a limited amount of axial misalignment, which refers to the offset between the rotational axes of the connected shafts. The flexible diaphragm allows for a slight axial movement, ensuring that the coupling can handle minor misalignments without introducing significant additional stresses to the shafts or coupling components.

  • Angular Misalignment:
  • Diaphragm couplings can also compensate for angular misalignment, which occurs when the rotational axes of the shafts are not parallel. The flexibility of the diaphragm allows it to flex and bend, allowing the coupling to transmit torque efficiently even when the shafts are at an angle to each other.

  • Parallel Misalignment:
  • Parallel misalignment refers to the lateral offset between the shafts in the same plane. Diaphragm couplings can accommodate a certain degree of parallel misalignment due to the flexibility of the diaphragm. This feature helps prevent binding or premature wear on the coupling and connected machinery.

Diaphragm couplings are specifically designed to handle misalignments while maintaining smooth and efficient torque transmission. The flexibility of the diaphragm allows it to compensate for these misalignments, reducing stress on the connected equipment and providing a more reliable power transmission solution.

It’s important to note that while diaphragm couplings can accommodate some misalignments, there are limits to the amount of misalignment they can compensate for. Excessive misalignments beyond the coupling’s specified tolerances can lead to reduced coupling performance, premature wear, and potential failure. Therefore, it is essential to follow the manufacturer’s guidelines and recommendations for allowable misalignments to ensure optimal performance and longevity of the diaphragm coupling in a given application.

diaphragm coupling

Real-World Case Studies of Diaphragm Couplings in Engineering Projects

Diaphragm couplings have been successfully utilized in various engineering projects, providing reliable power transmission and addressing specific challenges faced by different industries. Here are some real-world case studies and success stories showcasing the effectiveness of diaphragm couplings:

  1. Case Study 1: Pumping System in Wastewater Treatment Plant
  2. In a wastewater treatment plant, a critical pumping system was experiencing frequent breakdowns due to misalignment issues and vibration-related failures. The plant engineers decided to replace the existing gear couplings with diaphragm couplings to address these problems. The diaphragm couplings’ flexibility allowed them to compensate for the misalignment caused by thermal expansion and pump impeller wear. Additionally, the couplings’ ability to dampen vibrations reduced stress on the pump bearings, resulting in extended maintenance intervals and increased overall system reliability. The successful implementation of diaphragm couplings in this project led to significant cost savings by minimizing downtime and reducing the need for frequent maintenance.

  3. Case Study 2: Turbine-Generator Coupling in Power Plant
  4. In a power generation plant, a large gas turbine-generator coupling required replacement due to excessive wear and fatigue-related failures in the previous coupling. The plant engineers opted for a high-performance diaphragm coupling with improved fatigue resistance and higher torque capacity. The flexibility of the diaphragm coupling allowed it to accommodate slight misalignments between the turbine and the generator during operation. This capability reduced the stress on the coupling and mitigated the risk of premature failure. The diaphragm coupling’s ability to handle torsional vibrations and dampen mechanical resonance further improved the overall reliability and performance of the turbine-generator system, resulting in increased power generation efficiency and reduced maintenance costs.

  5. Case Study 3: Industrial Compressor System
  6. In an industrial compressor application, the existing coupling experienced frequent failures due to misalignment and shock loads from varying compression demands. The plant engineers replaced the old coupling with a diaphragm coupling featuring high misalignment tolerance and excellent shock absorption properties. The diaphragm coupling’s flexibility effectively compensated for the misalignment between the compressor and the motor, resulting in smoother operation and reduced stress on the drive components. Additionally, the coupling’s ability to absorb sudden shock loads reduced the risk of equipment damage and minimized unplanned downtime. The successful implementation of the diaphragm coupling significantly improved the compressor system’s reliability and contributed to increased productivity in the industrial facility.

These case studies demonstrate the successful application of diaphragm couplings in diverse engineering projects, including wastewater treatment plants, power generation facilities, and industrial compressors. The flexibility, misalignment compensation, and vibration dampening properties of diaphragm couplings have proven to be valuable in addressing specific challenges and enhancing the performance and reliability of critical machinery in various industries.

diaphragm coupling

How Do Diaphragm Couplings Handle Misalignment Between Shafts and Reduce Vibrations?

Diaphragm couplings are designed to handle misalignment between shafts and reduce vibrations effectively. Here’s how they achieve these functionalities:

  1. Misalignment Handling: Diaphragm couplings can accommodate three types of misalignment: angular, parallel, and axial misalignment.
    • Angular Misalignment: When the shafts are not perfectly aligned and have angular offset, the flexible diaphragm in the coupling can flex and bend, allowing for relative movement between the shafts without transmitting excessive torque loads or inducing stress on the machinery.
    • Parallel Misalignment: In cases where the shafts have parallel misalignment (i.e., horizontal offset), the diaphragm can also flex and move laterally to accommodate the misalignment while maintaining a continuous connection between the two hubs.
    • Axial Misalignment: Diaphragm couplings can also handle axial misalignment (i.e., axial displacement), as the flexible diaphragm can compress or elongate slightly to adjust for the axial movement of the shafts.
  2. Vibration Reduction: Diaphragm couplings are known for their ability to dampen vibrations, which helps in reducing vibration levels in the connected machinery and the overall mechanical system.
    • Flexible Diaphragm: The key component that enables vibration reduction is the flexible diaphragm. As the diaphragm flexes in response to misalignment or torque loads, it absorbs and dissipates vibrations, preventing them from being transmitted through the coupling and into the system.
    • Natural Frequency: The design of the diaphragm is tuned to have a specific natural frequency, which allows it to effectively dampen and attenuate vibrations within the desired range.
    • Material Selection: The choice of material for the diaphragm is crucial in determining its vibration damping capabilities. Certain materials have better vibration-absorbing properties, making them ideal for use in diaphragm couplings.

In summary, diaphragm couplings handle misalignment between shafts by using the flexible diaphragm to accommodate angular, parallel, and axial misalignment. Additionally, they reduce vibrations by utilizing the same flexible diaphragm to dampen and absorb vibrations, enhancing the smooth operation and longevity of the connected machinery and mechanical systems.

China Good quality Manufacturer Provides Diaphragm Couplings, Toothed Couplings, and Plum CHINAMFG Couplings  China Good quality Manufacturer Provides Diaphragm Couplings, Toothed Couplings, and Plum CHINAMFG Couplings
editor by CX 2024-05-15