China Hot selling Glj-44X53 Aluminum Alloy Double Diaphragm Set Screw Coupling

Product Description

GLJ Aluminum alloy double diaphragm set screw coupling

Description of GLJ Aluminum alloy double diaphragm sescrew coupling
>High torque rigidity, can accurately control the rotation of the shaft, can carry out high-precision control
>Designed for servo and stepping motor
>No gap between the shaft and sleeve connection, general for positive and negative rotation
>Low inertia, suitable for high speed operation
>The diaphragm is made of spring steel with excellent fatigue resistance
>With keyway design, positioning screw fastening way

Dimensions of GLJ Aluminum alloy double diaphragm sescrew coupling

model parameter common bore diameter d1,d2 ΦD L LF LP d3 S F M tightening screw torque
GLJ-19×27 3,4,5,6,6.35,7,8,9,9.525,10 19 27 9.1 5.2 9 1.8 4.25 M3 0.7
GLJ-26×32 4,5,6,6.35,7,8,9,9.525,10,11,12,12.7 26 32 10.7 5.4 12.5 2.6 4.5 M4 1.7
GLJ-32×41 6,6.35,7,8,9,9.525,10,11,12,12.7,13,14,15 32 41 12.75 8.5 16 3.5 6.12 M4 1.7
GLJ-39×47 6,6.35,7,8,9,9.525,10,11,12,12.7,13,14,15,16 39 47 15 8 19.3 4.5 6.62 M5 4
GLJ-44×53 8,9,9.525,10,11,12,12.7,14,15,16,17,18,19,20 44 53 18.25 7.5 22.5 4.5 8.12 M6 8.4
GLJ-56×64 10,11,12,12.7,13,14,15,16,17,18,19,20,22,24,25,28,30,32 56 64 19.75 13.5 32.5 5.5 6.4 M6 8.4
GLJ-68×75 12,14,15,16,17,18,19,20,22,24,25,28,30,32,35,38 68 75 23.35 15.7 45.5 6.3 7.7 M8 10.5

Anodizing treatment Rated torque
allowable eccentricity
allowable deflection angle
allowable axial deviation
maximum speed
static torsional stiffness
moment of inertia
Material of shaft sleeve Material of shrapnel surface treatment weight
GLJ-19×27 1 0.12 1.5 ±0.18 10000 170 8.8×10-7 High strength aluminum alloy S U S 3 0 4 Spring steel Anodizing treatment 13
GLJ-26×32 1.5 0.15 1.5 ±0.3 10000 820 2.8×10-6 29
GLJ-32×41 2 0.17 1.5 ±0.36 10000 1750 1.8×10-6 60
GLJ-39×47 6 0.22 1.5 ±0.45 10000 2850 2.7×10-5 101
GLJ-44×53 9 0.22 1.5 ±0.54 10000 3300 4.2×10-5 190
GLJ-56×64 25 0.27 1.5 ±0.72 10000 9480 1.6×10-4 318
GLJ-68×75 60 0.32 1.5 ±0.8 9000 19000 2.0×10-4 492


diaphragm coupling

Industries and Use Cases for Diaphragm Couplings

Diaphragm couplings find applications in various industries due to their flexibility, precision, and ability to handle misalignment. Here are some common industries that commonly use diaphragm couplings and their specific use cases:

  1. Industrial Machinery:
  2. In the industrial machinery sector, diaphragm couplings are utilized for:

    • Power transmission in pumps and compressors
    • Motion control systems in robotics and automation
    • Drive systems for conveyors and material handling equipment
    • Motion control applications in packaging and printing machinery
  3. Oil and Gas:
  4. In the oil and gas industry, diaphragm couplings are commonly used in:

    • Gas compressors and turbine drives
    • Extraction pumps and mud pumps
    • Rotating equipment on offshore platforms
    • Power transmission in drilling rigs
  5. Steel and Metal Processing:
  6. Diaphragm couplings play a vital role in the steel and metal processing industry, where they are used in:

    • Rolling mills and metal forming equipment
    • Continuous casting machines
    • High-temperature furnace drives
    • Steel shears and cutters
  7. Aerospace and Defense:
  8. In the aerospace and defense sector, diaphragm couplings are utilized in:

    • Aircraft engine power transmission
    • Missile and satellite systems
    • Airborne radar and avionics equipment
    • Military vehicle drivetrains
  9. Marine:
  10. In the marine industry, diaphragm couplings are commonly found in:

    • Marine propulsion systems
    • Shipboard pumps and compressors
    • Power transmission in marine generators
    • Steering systems for marine vessels
  11. Chemical and Process Industries:
  12. In the chemical and process industries, diaphragm couplings are used in:

    • Chemical processing pumps and compressors
    • Agitators and mixers
    • Reaction vessels and reactors
    • Chemical plant material handling systems

These examples represent just a few of the many industries where diaphragm couplings are utilized. Their ability to handle misalignment, dampen vibrations, and transmit torque reliably makes them an integral part of various mechanical systems in different sectors.

diaphragm coupling

Design Considerations for Selecting a Diaphragm Coupling for a Specific Application

When choosing a diaphragm coupling for a particular application, several crucial design considerations should be taken into account. Each application has unique requirements, and selecting the right diaphragm coupling can significantly impact the overall performance and reliability of the system. Here are the key design considerations:

  • 1. Torque Capacity:
  • Determine the maximum torque that the diaphragm coupling will need to transmit in the application. Select a diaphragm coupling with a torque capacity that comfortably exceeds the application’s peak torque requirements. Consider potential torque variations during operation and choose a coupling that can handle the dynamic torque conditions, especially in machines with frequent start-stop cycles or load fluctuations.

  • 2. Misalignment Tolerance:
  • Assess the potential misalignment between the connected shafts in the application. Diaphragm couplings are known for their ability to compensate for various types of misalignment, such as axial, angular, and parallel misalignment. Determine the expected misalignment angles and choose a diaphragm coupling with the appropriate misalignment capabilities to ensure smooth operation and minimize stress on the coupling and connected machinery.

  • 3. Speed and RPM:
  • Consider the rotational speed and RPM (revolutions per minute) requirements of the application. Diaphragm couplings are suitable for high-speed applications due to their balanced design and ability to dampen vibrations. Ensure that the selected coupling can handle the required RPM without encountering critical speed issues or exceeding its rated limitations.

  • 4. Operating Environment:
  • Evaluate the environmental conditions in which the diaphragm coupling will operate. Consider factors such as temperature, humidity, presence of corrosive substances, and exposure to contaminants. Choose a diaphragm coupling made from materials suitable for the specific operating environment to prevent corrosion and premature wear.

  • 5. Space Constraints:
  • Diaphragm couplings have a compact design, making them suitable for applications with limited space. Consider the available installation space and choose a coupling that fits within the available dimensions while providing the required torque capacity and misalignment compensation.

  • 6. Maintenance Requirements:
  • Assess the maintenance requirements of the diaphragm coupling. Some couplings may require periodic lubrication, while others are maintenance-free. Choose a coupling with maintenance requirements that align with the resources and capabilities of the maintenance team.

  • 7. Application-specific Factors:
  • Consider any unique factors relevant to the application, such as the presence of shock loads, dynamic balancing requirements, or the need for precision in high-accuracy systems. These specific factors can influence the selection of the most suitable diaphragm coupling for the application.

By carefully considering these design factors, engineers and designers can select the most appropriate diaphragm coupling for a specific application. The right coupling choice will enhance the overall performance, reliability, and service life of the machinery or equipment in which it is employed.

diaphragm coupling

What is a Diaphragm Coupling and How Does it Function in Mechanical Systems?

A diaphragm coupling is a type of flexible coupling used in mechanical systems to transmit torque between two shafts that are slightly misaligned. It consists of two hubs, each attached to a shaft, and a flexible diaphragm in between.

The function of a diaphragm coupling is to accommodate misalignment while transmitting torque smoothly and efficiently. Here’s how it works:

  1. Torsional Flexibility: The diaphragm, typically made of metal, is designed with a series of corrugations or convolutions. These corrugations allow the diaphragm to flex and bend in response to shaft misalignment.
  2. Transmitting Torque: When torque is applied to one shaft, it gets transferred to the diaphragm, which then flexes to accommodate any angular, parallel, or axial misalignment between the shafts.
  3. Maintaining Alignment: As the diaphragm flexes, it maintains a constant connection between the two hubs and ensures that the rotational motion is smoothly transferred from one shaft to the other.
  4. No Lubrication: Diaphragm couplings do not require any lubrication, making them low-maintenance and suitable for various applications.
  5. High Torque Capacity: Despite their flexibility, diaphragm couplings can handle high torque loads, making them ideal for demanding mechanical systems.
  6. Vibration Damping: The flexibility of the diaphragm also helps in dampening vibrations, reducing the risk of damage to connected machinery.
  7. Compensation for Misalignment: Diaphragm couplings can compensate for angular, parallel, and axial misalignment, although their angular misalignment capacity is typically higher than the other types.

In summary, a diaphragm coupling provides a reliable and efficient way to transmit torque while accommodating misalignment, reducing wear and tear on equipment, and ensuring smooth operation in various mechanical systems.

China Hot selling Glj-44X53 Aluminum Alloy Double Diaphragm Set Screw Coupling  China Hot selling Glj-44X53 Aluminum Alloy Double Diaphragm Set Screw Coupling
editor by CX 2023-09-21