China OEM 30 Inch Diaphragm Valve Union Ball Valve 3-Way Elbow Coupling Flange Double Check Valve DN 25 Pph Pipes and Fittings for Water

Product Description

Product Description


1. The allowable compensation quantity listed in the table refers to the relative offset of 2 axes formed by the comprehensive factors such as vibration, shock, deformation and temperature change caused by manufacturing error, installation error and working load change under working condition.
2. The maximum allowable angular deviation of the coupling shall not exceed ±5°.

The maximum opening value is a circular hole or a tapered hole with a keyway.

Main applications:

DWZ disc eddy current brake is mainly used as load in loading dynamometer equipment. it is experimental apparatus which can measure the dynamic mechanical properties, especially in dynamic loading test whose power value is small or tiny, also can be treated as suction power devices of other dynamic devices.

DW series disc eddy current dynamometer is, is that add device for measuring torque and rotational speed on DWZ series disc eddy current brake, it is experimental apparatus which can measure the dynamic mechnical properties, especial in dynamic loading test whose power value is small or tiny.

CW eddy current brake as a load is mainly used to measure the mechanical characteristics of inspection equipment, it and other control instrument (including loading apparatus, torque speed sensor and torque power acquisition instrument etc.) can be composed of eddy current dynamometer can be used for performance testing of the internal combustion engine, motor, gas turbine, automobile and its dynamic mechanical components, compared with other power measuring device, the CW series power measuring device has the advantages of reliability, high stability and practicability.

Eddy current brake/dynamometer Rated Power Rated torque Rated speed Maximum rotational speed Turning inertia Maximum excitation voltage Maximum excitation Current Cooling water pressure Flow of the cooling water
DWZ/DW-0.75 0.75 5 2000-2600 16000 0.002 80 3 0.1~0.3 1
DWZ/DW-3 3 10 2000-2600 14000 0.003 80 3 0.1~0.3 2
DWZ/DW-6 6 25 2000-2600 14000 0.003 80 3 0.1~0.3 3
DWZ/DW-10 10 50 2000-2600 13000 0.01 80 3 0.1~0.3 4.5
DWZ/DW-16 16 70 2000-2600 13000 0.02 80 3.5 0.1~0.3 6.5
DWZ/DW-25 25 120 2000-2600 11000 0.05 80 3.5 0.1~0.3 15
DWZ/DW-40 40 160 2000-2600 10000 0.1 90 4 0.1~0.3 25
DWZ/DW-63 63 250 2000-2600 9000 0.18 90 4 0.1~0.3 45
DWZ/DW-100 100 400 2000-2600 8500 0.32 120 4 0.1~0.3 60
DWZ/DW-160 160 600 2000-2600 8000 0.52 120 5 0.1~0.3 100
DWZ/DW-250 250 1100 2000-2600 7000 1.8 150 5 0.2~0.4 180
DWZ/DW-300 300 1600 2000-2600 6000 2.7 150 5 0.2~0.4 210
DWZ/DW-400 400 2200 2000-2600 5000 3.6 180 10 0.2~0.4 300
DWZ/DW-630 630 3600 2000-2600 5000 5.3 180 10 0.2~0.4 450


/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

diaphragm coupling

Proper Installation of a Diaphragm Coupling for Optimal Performance and Reliability

Proper installation of a diaphragm coupling is essential to ensure its optimal performance and reliability. Here are the steps to follow for a successful installation:

  1. Inspect the Coupling:
  2. Before installation, thoroughly inspect the diaphragm coupling for any damage, wear, or deformation. Check for proper alignment of the hubs and make sure they are clean and free from any debris or contaminants.

  3. Shaft Preparation:
  4. Ensure that the shafts to be connected are clean, smooth, and free of any burrs or rough edges that could damage the coupling or affect its performance. If necessary, use appropriate tools to deburr and polish the shaft ends.

  5. Hub Alignment:
  6. Align the two hubs of the diaphragm coupling carefully with the shafts. Misalignment during installation can cause premature wear and failure of the coupling. Use alignment tools like dial indicators or laser alignment systems to achieve accurate shaft alignment.

  7. Tighten Fasteners Correctly:
  8. Use the specified torque values and tightening sequence provided by the coupling manufacturer to tighten the fasteners securely. Over-tightening can lead to stress concentrations, while under-tightening can result in loose connections and coupling slippage.

  9. Check Runout and Balance:
  10. After installation, check the runout of the coupling assembly to ensure that it rotates without wobbling or eccentricity. Also, verify that the coupling is properly balanced to prevent excessive vibrations during operation.

  11. Lubrication (if applicable):
  12. Some diaphragm couplings require lubrication for smooth operation. If lubrication is necessary, follow the manufacturer’s guidelines and use the recommended lubricant to prevent premature wear and reduce friction.

  13. Regular Maintenance:
  14. To ensure continued optimal performance, schedule regular inspections and maintenance for the diaphragm coupling. Check for signs of wear, misalignment, or damage, and replace the coupling if necessary. Regular maintenance can help identify potential issues early and prevent unexpected failures.

Following these installation and maintenance guidelines will help maximize the life and performance of the diaphragm coupling, ensuring reliable and efficient operation in various mechanical systems and applications.

diaphragm coupling

How Does the Flexibility of Diaphragm Couplings Enhance Their Performance in Challenging Environments?

Diaphragm couplings’ flexibility is a key feature that enhances their performance in challenging environments. The ability to flex and compensate for misalignments provides several advantages, making them well-suited for various industrial applications. Here’s how the flexibility of diaphragm couplings contributes to their enhanced performance:

  • Misalignment Compensation:
  • One of the primary benefits of diaphragm couplings’ flexibility is their ability to accommodate misalignments between the connected shafts. In real-world applications, it is challenging to achieve perfect alignment between shafts due to factors like thermal expansion, shaft deflection, and machine assembly tolerances. Diaphragm couplings can handle axial, angular, and parallel misalignments, ensuring smooth operation even in situations where misalignments may occur during machine operation. By compensating for misalignment, diaphragm couplings reduce stress on the shafts and connected machinery, minimizing the risk of premature wear and failure.

  • Vibration Dampening:
  • The flexibility of diaphragm couplings allows them to absorb and dampen vibrations that can arise during machine operation. Vibrations can be caused by factors like imbalances, load fluctuations, and mechanical resonances. Diaphragm couplings act as a vibration buffer, attenuating vibration transmission from one shaft to another. This dampening effect helps reduce the risk of mechanical resonance, which can lead to increased stresses and premature failure of components. By dampening vibrations, diaphragm couplings contribute to smoother and quieter operation, promoting overall system reliability and longevity.

  • Shock Absorption:
  • In some industrial applications, sudden shocks and impacts can occur due to machine start-ups, load changes, or external forces. The flexibility of diaphragm couplings allows them to absorb and distribute the energy generated by these shocks. By absorbing shock loads, diaphragm couplings protect the connected machinery from damage and prevent potential disruptions in the production process. This shock absorption capability is particularly valuable in applications where equipment encounters frequent and varying shock loads.

  • Temperature Variations:
  • Diaphragm couplings can operate effectively across a wide range of temperatures. The flexibility of the diaphragm allows it to maintain its performance even in high-temperature environments. This versatility makes diaphragm couplings suitable for applications in industries like steel manufacturing, glass production, and petrochemical processing, where high temperatures are common.

Overall, the flexibility of diaphragm couplings is a significant advantage in challenging environments. By compensating for misalignments, dampening vibrations, absorbing shocks, and withstanding temperature variations, diaphragm couplings ensure reliable and efficient power transmission in various industrial settings. Their ability to enhance system performance and protect machinery from adverse conditions makes them a preferred choice in critical applications that demand durability, precision, and resilience.

diaphragm coupling

Advantages of Diaphragm Coupling Compared to Other Types of Couplings

A diaphragm coupling offers several advantages over other types of couplings, making it a popular choice for various applications. Here are some of the key advantages:

  1. Torsional Flexibility: Diaphragm couplings provide excellent torsional flexibility, allowing them to compensate for angular, parallel, and axial misalignment between shafts. This flexibility helps in reducing stress on connected equipment and extends their lifespan.
  2. No Backlash: Unlike some other couplings, diaphragm couplings have no backlash, which means there is no play or free movement between the connected shafts. This characteristic makes them suitable for applications that require precise and accurate motion transmission.
  3. No Lubrication: Diaphragm couplings are typically maintenance-free since they do not require any lubrication. This reduces the overall maintenance costs and simplifies the operation of the mechanical system.
  4. High Torque Capacity: Despite their flexible design, diaphragm couplings can handle high torque loads efficiently. This makes them suitable for heavy-duty applications where high power transmission is required.
  5. Vibration Damping: The flexibility of the diaphragm in the coupling helps in absorbing and dampening vibrations, reducing the risk of damage to connected machinery and improving the overall system’s performance.
  6. Compact Size: Diaphragm couplings are generally compact and lightweight compared to some other coupling types. This feature makes them suitable for applications with limited space or weight constraints.
  7. Corrosion Resistance: Diaphragm couplings made from appropriate materials offer excellent corrosion resistance, making them suitable for use in harsh environments or industries where corrosion is a concern.
  8. Fail-Safe Design: Diaphragm couplings have a fail-safe design, meaning that in the event of diaphragm failure, they do not lead to catastrophic coupling failure. This enhances the safety and reliability of the mechanical system.
  9. Cost-Effectiveness: Considering their low maintenance requirements, long service life, and efficient torque transmission, diaphragm couplings offer a cost-effective solution for various applications.

In conclusion, diaphragm couplings provide significant advantages over other types of couplings, including torsional flexibility, zero backlash, no lubrication needs, high torque capacity, vibration damping, compact size, corrosion resistance, fail-safe design, and cost-effectiveness. These features make them a preferred choice in a wide range of mechanical systems and industrial applications.

China OEM 30 Inch Diaphragm Valve Union Ball Valve 3-Way Elbow Coupling Flange Double Check Valve DN 25 Pph Pipes and Fittings for Water  China OEM 30 Inch Diaphragm Valve Union Ball Valve 3-Way Elbow Coupling Flange Double Check Valve DN 25 Pph Pipes and Fittings for Water
editor by CX 2024-05-13