China supplier Double Diaphragm Flexible Shaft Coupling Flexible Coupling Servo Motor Coupling

Product Description

Product Description

 

The maximum opening value is a circular hole or a tapered hole with a keyway.

Main applications:

DWZ disc eddy current brake is mainly used as load in loading dynamometer equipment. it is experimental apparatus which can measure the dynamic mechanical properties, especially in dynamic loading test whose power value is small or tiny, also can be treated as suction power devices of other dynamic devices.

DW series disc eddy current dynamometer is, is that add device for measuring torque and rotational speed on DWZ series disc eddy current brake, it is experimental apparatus which can measure the dynamic mechnical properties, especial in dynamic loading test whose power value is small or tiny.

CW eddy current brake as a load is mainly used to measure the mechanical characteristics of inspection equipment, it and other control instrument (including loading apparatus, torque speed sensor and torque power acquisition instrument etc.) can be composed of eddy current dynamometer can be used for performance testing of the internal combustion engine, motor, gas turbine, automobile and its dynamic mechanical components, compared with other power measuring device, the CW series power measuring device has the advantages of reliability, high stability and practicability.

Eddy current brake/dynamometer Rated Power Rated torque Rated speed Maximum rotational speed Turning inertia Maximum excitation voltage Maximum excitation Current Cooling water pressure Flow of the cooling water
DWZ/DW-0.75 0.75 5 2000-2600 16000 0.002 80 3 0.1~0.3 1
DWZ/DW-3 3 10 2000-2600 14000 0.003 80 3 0.1~0.3 2
DWZ/DW-6 6 25 2000-2600 14000 0.003 80 3 0.1~0.3 3
DWZ/DW-10 10 50 2000-2600 13000 0.01 80 3 0.1~0.3 4.5
DWZ/DW-16 16 70 2000-2600 13000 0.02 80 3.5 0.1~0.3 6.5
DWZ/DW-25 25 120 2000-2600 11000 0.05 80 3.5 0.1~0.3 15
DWZ/DW-40 40 160 2000-2600 10000 0.1 90 4 0.1~0.3 25
DWZ/DW-63 63 250 2000-2600 9000 0.18 90 4 0.1~0.3 45
DWZ/DW-100 100 400 2000-2600 8500 0.32 120 4 0.1~0.3 60
DWZ/DW-160 160 600 2000-2600 8000 0.52 120 5 0.1~0.3 100
DWZ/DW-250 250 1100 2000-2600 7000 1.8 150 5 0.2~0.4 180
DWZ/DW-300 300 1600 2000-2600 6000 2.7 150 5 0.2~0.4 210
DWZ/DW-400 400 2200 2000-2600 5000 3.6 180 10 0.2~0.4 300
DWZ/DW-630 630 3600 2000-2600 5000 5.3 180 10 0.2~0.4 450

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

diaphragm coupling

Materials Used to Manufacture Diaphragm Couplings and Their Impact on Performance

Diaphragm couplings are manufactured using various materials, and the choice of material significantly impacts their performance in different applications. Here are some common materials used in diaphragm couplings and their impact on performance:

  1. Metallic Alloys:
  2. Stainless steel and other high-strength metallic alloys are widely used in diaphragm couplings. These materials offer excellent durability, high torsional stiffness, and resistance to wear and fatigue. They are well-suited for high-torque applications and environments with demanding operating conditions.

  3. High-Temperature Alloys:
  4. In applications where diaphragm couplings are exposed to elevated temperatures, specialized high-temperature alloys like Inconel and Hastelloy are used. These alloys can withstand extreme heat without losing their mechanical properties, making them ideal for use in industries such as steel processing and power generation.

  5. Titanium:
  6. Titanium is favored for its lightweight and excellent corrosion resistance. Diaphragm couplings made from titanium are commonly used in aerospace and marine applications where weight reduction and resistance to corrosive environments are critical.

  7. Elastomers:
  8. For certain applications that require vibration dampening and shock absorption, diaphragm couplings can be manufactured with elastomeric materials like rubber or urethane. These materials help reduce transmitted vibrations and can be found in pumps, compressors, and automotive drivetrain systems.

  9. Non-Metallic Materials:
  10. In situations where electrical isolation or non-magnetic properties are necessary, non-metallic materials like PTFE (Teflon) or polypropylene may be used. These materials are also highly resistant to chemical corrosion, making them suitable for certain chemical processing and semiconductor applications.

The choice of material impacts several aspects of diaphragm coupling performance, including:

  • Torsional Stiffness: Metallic alloys and high-temperature materials provide high torsional stiffness, ensuring efficient torque transmission and accuracy in motion control applications.
  • Corrosion Resistance: The selection of corrosion-resistant materials is crucial in applications where diaphragm couplings are exposed to corrosive environments, such as in marine or chemical industries.
  • Temperature Resistance: High-temperature alloys enable diaphragm couplings to operate effectively in environments with elevated temperatures, such as steel processing or power generation plants.
  • Weight: Materials like titanium offer lightweight advantages, making diaphragm couplings suitable for aerospace and other weight-sensitive applications.
  • Vibration Damping: Elastomeric materials provide excellent vibration dampening properties, reducing vibrations and noise in certain applications.

Manufacturers carefully select the appropriate material based on the specific requirements of the application to ensure optimal performance and reliability of the diaphragm coupling in a wide range of industries.

diaphragm coupling

Potential Causes of Failure in Diaphragm Couplings and Prevention Methods

While diaphragm couplings are designed for reliability and durability, certain factors can contribute to their failure over time. Understanding the potential causes of failure and implementing preventive measures can help maximize the lifespan and performance of diaphragm couplings. Here are some common causes of failure and the corresponding prevention methods:

  • 1. Misalignment:
  • Misalignment between the shafts connected by the diaphragm coupling can lead to increased stresses on the diaphragm and other coupling components. Over time, this can cause fatigue, cracking, or failure of the diaphragm. To prevent misalignment-related failures, ensure that the shafts are properly aligned during installation and perform regular alignment checks during maintenance.

  • 2. Overloading:
  • Subjecting the diaphragm coupling to torque levels beyond its rated capacity can lead to premature failure. Overloading can cause excessive deformation of the diaphragm, leading to fatigue and ultimately, failure. To avoid overloading, use diaphragm couplings with appropriate torque ratings for the specific application and ensure that the system operates within the recommended limits.

  • 3. Corrosion and Contamination:
  • Exposure to corrosive environments or contaminants can degrade the material of the diaphragm and other coupling components, reducing their strength and integrity. To prevent corrosion-related failures, use diaphragm couplings made from corrosion-resistant materials in environments where exposure to chemicals or moisture is a concern. Regularly inspect and clean the coupling to remove any contaminants that may have accumulated.

  • 4. Fatigue:
  • Repeated cycles of loading and unloading can cause fatigue in the diaphragm material over time. Fatigue-related failures may manifest as cracks or fractures in the diaphragm. To mitigate fatigue, choose diaphragm couplings made from materials with high fatigue resistance. Regular inspections can also help detect early signs of fatigue-related issues.

  • 5. Improper Installation:
  • Incorrect installation procedures, such as insufficient torque on fasteners or misaligned components, can lead to uneven stresses on the diaphragm coupling, accelerating wear and failure. To prevent improper installation-related failures, follow the manufacturer’s guidelines and use appropriate tools and procedures during installation.

  • 6. Excessive Vibrations:
  • Excessive vibrations in the system can lead to premature wear and failure of the diaphragm coupling. To reduce vibrations, ensure that the system is properly balanced and that any issues causing vibrations, such as misalignment or mechanical resonance, are addressed promptly.

  • 7. Lack of Maintenance:
  • Insufficient or irregular maintenance can lead to undetected issues and accelerated wear in the diaphragm coupling. Implement a comprehensive maintenance program that includes regular inspections, lubrication, and alignment checks to identify and address potential problems early.

By addressing these potential causes of failure and taking appropriate preventive measures, such as proper installation, regular maintenance, and using suitable materials, the reliability and lifespan of diaphragm couplings can be significantly improved in various industrial applications.

diaphragm coupling

What is a Diaphragm Coupling and How Does it Function in Mechanical Systems?

A diaphragm coupling is a type of flexible coupling used in mechanical systems to transmit torque between two shafts that are slightly misaligned. It consists of two hubs, each attached to a shaft, and a flexible diaphragm in between.

The function of a diaphragm coupling is to accommodate misalignment while transmitting torque smoothly and efficiently. Here’s how it works:

  1. Torsional Flexibility: The diaphragm, typically made of metal, is designed with a series of corrugations or convolutions. These corrugations allow the diaphragm to flex and bend in response to shaft misalignment.
  2. Transmitting Torque: When torque is applied to one shaft, it gets transferred to the diaphragm, which then flexes to accommodate any angular, parallel, or axial misalignment between the shafts.
  3. Maintaining Alignment: As the diaphragm flexes, it maintains a constant connection between the two hubs and ensures that the rotational motion is smoothly transferred from one shaft to the other.
  4. No Lubrication: Diaphragm couplings do not require any lubrication, making them low-maintenance and suitable for various applications.
  5. High Torque Capacity: Despite their flexibility, diaphragm couplings can handle high torque loads, making them ideal for demanding mechanical systems.
  6. Vibration Damping: The flexibility of the diaphragm also helps in dampening vibrations, reducing the risk of damage to connected machinery.
  7. Compensation for Misalignment: Diaphragm couplings can compensate for angular, parallel, and axial misalignment, although their angular misalignment capacity is typically higher than the other types.

In summary, a diaphragm coupling provides a reliable and efficient way to transmit torque while accommodating misalignment, reducing wear and tear on equipment, and ensuring smooth operation in various mechanical systems.

China supplier Double Diaphragm Flexible Shaft Coupling Flexible Coupling Servo Motor Coupling  China supplier Double Diaphragm Flexible Shaft Coupling Flexible Coupling Servo Motor Coupling
editor by CX 2024-05-15