China wholesaler Reach CZPT High Precision Diaphragm Coupling Ric 7075 Aluminum Coupling

Product Description

Shaft coupling
Coupling type:  GE,GS,diaphgram coupling,Curved-tooth coupling (RGF)
GE ( jaw coupling, jaw coupling with Quincunx Elastomer, Flange-jaw coupling, 2-section jaw coupling )
GS (backlash-free standard coupling, backlash-free grooved coupling, expansion type coupling,
Diaphgram coupling (RIC,RDC&REC)

Material: C45, aluminum,cast iron
Heat treatment (available): Tempering, passivation
Surface treatment
For C45: Black, phosphated , polished
For Aluminum: anodize (clear and hard anodize) 
Elastomer:92SHA, 98SHA, 64SHD

Our main customers:

Good quality, factory price, fast delivery!!!

For power transmission spare parts, REACH XIHU (WEST LAKE) DIS.AN will be your best choice.

Please contact us for more information:



diaphragm coupling

Can Diaphragm Couplings Compensate for Axial, Angular, and Parallel Misalignments?

Yes, diaphragm couplings are designed to compensate for axial, angular, and parallel misalignments between two shafts, making them highly flexible and versatile for various mechanical systems. Here’s how diaphragm couplings handle each type of misalignment:

  • Axial Misalignment:
  • Diaphragm couplings can accommodate a limited amount of axial misalignment, which refers to the offset between the rotational axes of the connected shafts. The flexible diaphragm allows for a slight axial movement, ensuring that the coupling can handle minor misalignments without introducing significant additional stresses to the shafts or coupling components.

  • Angular Misalignment:
  • Diaphragm couplings can also compensate for angular misalignment, which occurs when the rotational axes of the shafts are not parallel. The flexibility of the diaphragm allows it to flex and bend, allowing the coupling to transmit torque efficiently even when the shafts are at an angle to each other.

  • Parallel Misalignment:
  • Parallel misalignment refers to the lateral offset between the shafts in the same plane. Diaphragm couplings can accommodate a certain degree of parallel misalignment due to the flexibility of the diaphragm. This feature helps prevent binding or premature wear on the coupling and connected machinery.

Diaphragm couplings are specifically designed to handle misalignments while maintaining smooth and efficient torque transmission. The flexibility of the diaphragm allows it to compensate for these misalignments, reducing stress on the connected equipment and providing a more reliable power transmission solution.

It’s important to note that while diaphragm couplings can accommodate some misalignments, there are limits to the amount of misalignment they can compensate for. Excessive misalignments beyond the coupling’s specified tolerances can lead to reduced coupling performance, premature wear, and potential failure. Therefore, it is essential to follow the manufacturer’s guidelines and recommendations for allowable misalignments to ensure optimal performance and longevity of the diaphragm coupling in a given application.

diaphragm coupling

How Does the Flexibility of Diaphragm Couplings Enhance Their Performance in Challenging Environments?

Diaphragm couplings’ flexibility is a key feature that enhances their performance in challenging environments. The ability to flex and compensate for misalignments provides several advantages, making them well-suited for various industrial applications. Here’s how the flexibility of diaphragm couplings contributes to their enhanced performance:

  • Misalignment Compensation:
  • One of the primary benefits of diaphragm couplings’ flexibility is their ability to accommodate misalignments between the connected shafts. In real-world applications, it is challenging to achieve perfect alignment between shafts due to factors like thermal expansion, shaft deflection, and machine assembly tolerances. Diaphragm couplings can handle axial, angular, and parallel misalignments, ensuring smooth operation even in situations where misalignments may occur during machine operation. By compensating for misalignment, diaphragm couplings reduce stress on the shafts and connected machinery, minimizing the risk of premature wear and failure.

  • Vibration Dampening:
  • The flexibility of diaphragm couplings allows them to absorb and dampen vibrations that can arise during machine operation. Vibrations can be caused by factors like imbalances, load fluctuations, and mechanical resonances. Diaphragm couplings act as a vibration buffer, attenuating vibration transmission from one shaft to another. This dampening effect helps reduce the risk of mechanical resonance, which can lead to increased stresses and premature failure of components. By dampening vibrations, diaphragm couplings contribute to smoother and quieter operation, promoting overall system reliability and longevity.

  • Shock Absorption:
  • In some industrial applications, sudden shocks and impacts can occur due to machine start-ups, load changes, or external forces. The flexibility of diaphragm couplings allows them to absorb and distribute the energy generated by these shocks. By absorbing shock loads, diaphragm couplings protect the connected machinery from damage and prevent potential disruptions in the production process. This shock absorption capability is particularly valuable in applications where equipment encounters frequent and varying shock loads.

  • Temperature Variations:
  • Diaphragm couplings can operate effectively across a wide range of temperatures. The flexibility of the diaphragm allows it to maintain its performance even in high-temperature environments. This versatility makes diaphragm couplings suitable for applications in industries like steel manufacturing, glass production, and petrochemical processing, where high temperatures are common.

Overall, the flexibility of diaphragm couplings is a significant advantage in challenging environments. By compensating for misalignments, dampening vibrations, absorbing shocks, and withstanding temperature variations, diaphragm couplings ensure reliable and efficient power transmission in various industrial settings. Their ability to enhance system performance and protect machinery from adverse conditions makes them a preferred choice in critical applications that demand durability, precision, and resilience.

diaphragm coupling

What is a Diaphragm Coupling and How Does it Function in Mechanical Systems?

A diaphragm coupling is a type of flexible coupling used in mechanical systems to transmit torque between two shafts that are slightly misaligned. It consists of two hubs, each attached to a shaft, and a flexible diaphragm in between.

The function of a diaphragm coupling is to accommodate misalignment while transmitting torque smoothly and efficiently. Here’s how it works:

  1. Torsional Flexibility: The diaphragm, typically made of metal, is designed with a series of corrugations or convolutions. These corrugations allow the diaphragm to flex and bend in response to shaft misalignment.
  2. Transmitting Torque: When torque is applied to one shaft, it gets transferred to the diaphragm, which then flexes to accommodate any angular, parallel, or axial misalignment between the shafts.
  3. Maintaining Alignment: As the diaphragm flexes, it maintains a constant connection between the two hubs and ensures that the rotational motion is smoothly transferred from one shaft to the other.
  4. No Lubrication: Diaphragm couplings do not require any lubrication, making them low-maintenance and suitable for various applications.
  5. High Torque Capacity: Despite their flexibility, diaphragm couplings can handle high torque loads, making them ideal for demanding mechanical systems.
  6. Vibration Damping: The flexibility of the diaphragm also helps in dampening vibrations, reducing the risk of damage to connected machinery.
  7. Compensation for Misalignment: Diaphragm couplings can compensate for angular, parallel, and axial misalignment, although their angular misalignment capacity is typically higher than the other types.

In summary, a diaphragm coupling provides a reliable and efficient way to transmit torque while accommodating misalignment, reducing wear and tear on equipment, and ensuring smooth operation in various mechanical systems.

China wholesaler Reach CZPT High Precision Diaphragm Coupling Ric 7075 Aluminum Coupling  China wholesaler Reach CZPT High Precision Diaphragm Coupling Ric 7075 Aluminum Coupling
editor by CX 2023-08-07